Fortuna intersects 88 g/t Au over 3.5m at the Séguéla Mine and provides exploration update

12.12.2023 | Globenewswire Europe

VANCOUVER, Dec. 12, 2023 - Fortuna Silver Mines Inc. (NYSE: FSM) (TSX: FVI) is pleased to provide an update on its exploration programs at the Séguéla Mine in Côte d'Ivoire, the recently acquired Diamba Sud Gold Project in Senegal, and the San Jose Mine in Mexico.

Exploration program highlights

Badior prospect, Séguéla Mine, Côte d'Ivoire:

SGRD1683:17.3 g/t Au over an estimated true width of 6.3 meters from 67 meters, including
49.5 g/t Au over an estimated true width of 1.4 meters from 67 meters
16.7 g/t Au over an estimated true width of 5.6 meters from 65 meters, including
SGRC1682:SGRC1682:121.0 g/t Au over an estimated true width of 0.7 meters from 70 meters, and
13.0 g/t Au over an estimated true width of 2.1 meters from 83 meters

SGRD1689: 10.7 g/t Au over an estimated true width of 2.1 meters from 159 meters, including 29.6 g/t Au over an estimated true width of 0.7 meters from 161 meters

Ancien deposit, Séguéla Mine, Côte d'Ivoire:

SGRD1657:	27.1 g/t Au over an estimated true width of 7.7 meters from 239 meters, including 138.5 g/t Au over an estimated true width of 1.4 meters from 241 meters
SGRC1661:	14.8 g/t Au over an estimated true width of 2.1 meters from 339 meters, and 22.9 g/t Au over an estimated true width of 15.4 meters from 347 meters, including 88.0 g/t Au over an estimated true width of 3.5 meters from 357 meters
SGRD1663:	6.0 g/t Au over an estimated true width of 19.6 meters from 346 meters, including 13.0 g/t Au over an estimated true width of 1.4 meters from 352meters, and 16.4 g/t Au over an estimated true width of 1.4 meters from 358 meters, and 36.4 g/t Au over an estimated true width of 1.4 meters from 362 meters
SGRD1664:	2.2 g/t Au over an estimated true width of 15.4 meters from 361 meters, including 11.3 g/t Au over an estimated true width of 0.7 meters from 368 meters, and 10.2 g/t Au over an estimated true width of 0.7 meters from 370 meters

Sunbird deposit, Séguéla Mine, Côte d'Ivoire:

- SGRD1695: 5.0 g/t Au over an estimated true width of 14.7 meters from 341 meters, including 27.7 g/t Au over an estimated true width of 2.1 meters from 347 meters
- SGRC1698: 4.9 g/t Au over an estimated true width of 8.4 meters from 200 meters
- 4.9 g/t Au over an estimated true width of 3.5 meters from 235 meters, including SGRD1696: 16.9 g/t Au over an estimated true width of 0.7 meters from 236 meters, and
 - 6.2 g/t Au over an estimated true width of 1.4 meters from 263 meters

Paul Weedon, Senior Vice President of Exploration at Fortuna, commented, "With the successful commissioning and ramp-up of the Séguéla Mine, the exploration focus has been directed towards the regional potential, featuring the emerging Badior prospect. Recent results include drill hole SGRC1683 intersecting 17.3 g/t Au over an estimated true width of 6.3 meters. In addition, the exploration teams are building the foundation for potential long term underground mining at the Ancien and Sunbird deposits, encouraged by results such as drill hole SGRD1661 intersecting 22.9 g/t Au over an estimated true width of 15.4 meters at Ancien."

Diamba Sud Gold Project, Senegal:

DSR503:7.5 g/t Au over an estimated true width of 16.2 meters from 75 metersDSDD129:9.9 g/t Au over an estimated true width of 11.7 meters from 12 metersDSR491:3.9 g/t Au over an estimated true width of 26.1 meters from 66 meters, and
5.8 g/t Au over an estimated true width of 13.5 meters from 104 metersDSR490:3.1 g/t Au over an estimated true width of 29.7 meters from 7 metersDSR506:3.0 g/t Au over an estimated true width of 23.4 meters from 36 meters, and
6.7 g/t Au over an estimated true width of 8.1 meters from 71 metersDSDD131:9.1 g/t Au over an estimated true width of 5.6 meters from 96.4 meters

Mr. Weedon continued, "Exploration drilling at the recently acquired Diamba Sud Gold Project has returned very encouraging results from the initial confirmatory drilling at Area A, with results such as drill hole DSR490 intersecting 3.1 g/t Au over an estimated true width of 29.7 meters from 7 meters, while hole DSR487 highlights the potential to increase the overall footprint of the Area A prospect with an interval of 2.3 g/t Au over an interval of 15.3 meters, extending beyond the historic mine design limit. With the team on the ground operating well after the conclusion of the Diamba Sud acquisition, I am very happy with the progress as we look forward to advancing the project in 2024."

Yessi vein, San Jose Mine, Mexico:

SJOM-1357:	204 g/t Ag Eq over an estimated true width of 7.1 meters from 167.30 meters
SJOM-1366A:	153 g/t Ag Eq over an estimated true width of 1.5 meters from 573.45 meters, and 258 g/t Ag Eq over an estimated true width of 1.0 meters from 636.40 meters
SJO-1417:	858 g/t Ag Eq over an estimated true width of 0.5 meters from 579.55 meters
SJOM-1418:	185 g/t Ag Eq over an estimated true width of 0.8 meters from 406.00 meters
SJOM-1428:	545 g/t Ag Eq over an estimated true width of 17.0 meters from 342.75 meters
SJO-1430:	1,431 g/t Ag Eq over an estimated true width of 1.1 meters from 593.50 meters, and 250 g/t Ag Eq over an estimated true width of 4.0 meters from 668.85 meters

SJO-1431: 195 g/t Ag Eq over an estimated true width of 5.2 meters from 601.30 meters

Mr. Weedon also highlighted the continuing work at the San Jose Mine where drilling to define the recently discovered Yessi vein has provided further insights into the regional structural controls with encouraging results, including 1,431 g/t Ag Eq over an estimated true width of 1.1 meters and a further 250 g/t Ag Eq over an estimated true width of 4 meters from SJO-1430, and 545 g/t Ag Eq over an estimated true width of 17.0 meters from SJOM-1428. "The structural complexity of the Yessi vein helps validate the wider regional structural understanding and highlights opportunities for additional near-mine exploration targets."

Séguéla Mine, Côte d'Ivoire

Drilling for increased geologic confidence and understanding of key high-grade controls at the Badior prospect was recently concluded, with 8 holes drilled totalling 1,691 meters (refer to Figure 1). Drilling has broadly outlined a gently northerly plunging high-grade lode which remains open at depth, with drill hole SGRD1689 intersecting 10.7 g/t Au over 2.1 meters from 159 meters downhole. The interpreted northerly plunge is unusual for mineralization at Séguéla which typically demonstrates a shallow to moderate southerly plunge, and which may represent a new or antithetic structural control. Further work is planned for 2024.

Figure 1: Badior long-section showing select recent results (looking west)

At Ancien, 9 holes for a total of 3,258 meters were completed (refer to Figure 2). This short program was designed to improve the understanding of the structural controls on the high-grade lodes hosting multiple intervals such as those intersected in drill holes SGRD1661 and SGRD1663. This increased geological confidence and understanding will help support an evaluation of the underground mining potential at Ancien, where the deposit remains open at depth. Further work is planned for 2024.

Figure 2: Ancien long-section showing select recent results (looking west)

At Sunbird, a comprehensive infill drilling program consisting of 47 holes totaling 11,075 meters, was completed in August 2023 (refer to Fortuna news release dated August 8, 2023). The infill drilling was followed by a program to continue testing the extent of mineralization. Results were received for 8 holes totalling 2,100 meters completed in the southern section of the deposit (refer to Figure 3). This short program was designed to improve the understanding of the structural controls projected a further 200 meters down-plunge from the last drilling sections with encouraging results including SGRD1695 intersecting 5.0 g/t Au over an estimated true width of 14.7 meters from 341 meters downhole. This increased geological confidence and understanding will help support an evaluation of the underground mining potential at Sunbird, where the deposit remains open at depth. Further work is planned for 2024.

Refer to Appendix 1 for full details of the Séguéla drill holes and assay results.

Figure 3: Sunbird long-section showing select recent results (looking west)

Diamba Sud Gold Project, Senegal

At Diamba Sud, a 10,945-meter, three-drill rig drilling program started on October 8, 2023, with 34 holes completed for 4,976 total meters drilled to date. The objectives of the program are as follows:

- Selected confirmatory drilling of Area A, Area D, and Karakara to improve resource confidence
- Drilling to test for extensions to the existing historic resource in support of project development and advancing further studies in 2024
- Advancing prospective areas such as Gamba Gamba North, Southern Arc, Western Splay, Area A North, and others
- Improved understanding of key geological controls including controlling structures, favorable lithologies, alteration and secondary enrichment zones

The Area A prospect is structurally complex with interpreted supergene mineralization overlaying primary mineralization preferentially hosted in a broad sedimentary package, which has been intersected by steeper mineralized structures and folding. Mineralization remains open along strike and at depth, as demonstrated by drill hole DSR490 intersecting 1.3 g/t Au over an estimated true width of 7.2 meters from 176 meters, and an additional 1.0 g/t Au over an estimated true width of 18.9 meters from 188 meters, extending mineralization beyond the historic pit design (refer to Figures 4 - 6).

This program will continue for the remainder of 2023 with additional drilling programs, including regional exploration and target generation budgeted for 2024.

Refer to Appendix 2 for full details of the Diamba Sud Gold Project drill holes and assay results.

Figure 4: Diamba Sud Gold Project location plan

Figure 5: Area A drilling location plan

Figure 6: Area A cross section A - A'; refer to Figure 5 for location

Figure 7: Area A cross section B - B'; refer to Figure 5 for location

San Jose Mine, Mexico

28.04.2025

Drilling of the recently discovered Yessi vein (refer to Fortuna news release filed on SEDAR+ on September 5, 2023) has continued with the objective of defining the structural relationship between the Yessi vein and the various systems at the San Jose Mine with 13 additional holes completed for a total of 7,444 meters.

Initially interpreted as an approximately north-south trending vein, recent drilling has highlighted the likelihood of the Yessi vein forming a north-northwest orientated link structure between the Victoria Mineralized Zone and an as yet undefined structure further eastwards, an interpretation supported by regional geophysical data. Drilling has been re-orientated to better target this revised orientation, with drilling continuing.

Mineralization remains open along strike to the southeast, whereas to the northwest the Yessi vein intersects the Victoria Mineralized Zone.

Refer to Appendix 3 for full details of the Yessi vein drill holes and assay results.

Figure 8: Plan view of the Yessi vein, San Jose Mine. Refer Figure 9 for the long-section view (A-A').

Figure 9: Long section view (A-A') of the Yessi vein, San Jose Mine

Quality Assurance & Quality Control (QA - QC)

Séguéla Mine, Côte d'Ivoire and Diamba Sud Gold Project, Senegal

All drilling data completed by the Company utilized the following procedures and methodologies. All drilling was carried out under the supervision of the Company's personnel.

All RC drilling used a 5.25-inch face sampling pneumatic hammer with samples collected into 60-liter plastic bags. Samples were kept dry by maintaining enough air pressure to exclude groundwater inflow. If water ingress exceeded the air pressure, RC drilling was stopped, and drilling converted to diamond core tails. Once collected, RC samples were riffle split through a three-tier splitter to yield a 12.5% representative sample for submission to the analytical laboratory. The residual 87.5% samples were stored at the drill site until assay results were received and validated. Coarse reject samples for all mineralized samples corresponding to significant intervals are retained and stored on-site at the Company-controlled core yard.

All diamond drilling (DD) drill holes at Séguéla were drilled with HQ sized diamond drill bits, whereas DD holes at Diamba Sud started with HQ sized diameter, before reducing to NQ diameter diamond drill bits on intersecting fresh rock. The core was logged, marked up for sampling using standard lengths of one meter or to a geological boundary. Samples were then cut into equal halves using a diamond saw. One half of the core was left in the original core box and stored in a secure location at the Company core yard at the project site. The other half was sampled, catalogued, and placed into sealed bags and securely stored at the site until shipment.

All Séguéla RC and DD core samples were shipped to ALS Laboratories' preparation laboratory in Yamoussoukro for preparation and then, via commercial courier, to ALS's facility in Ouagadougou, Burkina Faso for finishing. All Diamba Sud RC and DD samples were transported to ALS's preparation laboratory in Kedougou, before also being transported via commercial courier, to ALS's facility in Ouagadougou. Routine gold analysis using a 50-gram charge and fire assay with an atomic absorption finish was completed for all samples. Quality control procedures included the systematic insertion of blanks, duplicates, and sample standards into the sample stream. In addition, the ALS laboratory inserted its own quality control samples.

San Jose Mine, Mexico

All diamond drilling (DD) drill holes at San Jose were drilled with either NQ sized diameter (drilled from

underground) or HQ sized diamond drill bits reducing to NQ sized diameter with greater depth. Following detailed geological and geotechnical logging, all diamond drill core samples are split on-site by diamond sawing. One half of the core is submitted to the internal laboratory located in the CMC facilities. The CMC laboratory has been accredited by the Standard Council of Canada (ISO 17025: 2017) for preparation, drying, gravimetry, fire assay, Inductively Coupled Plasma and Atomic Absorption processes. The remaining half core is retained on-site for verification and reference purposes. Following preparation, the samples are assayed for gold and silver by standard fire assay methods and for silver and base metals by Inductively Coupled Plasma and as well as three acid digestion at the same internal laboratory. The QA - QC program includes the blind insertion of certified reference standards and assay blanks at a frequency of approximately 1 per 20 normal samples as well as the inclusion of duplicate samples for verification of sampling and assay precision levels.

Qualified Person

Paul Weedon, Senior Vice President of Exploration for <u>Fortuna Silver Mines Inc.</u>, is a Qualified Person as defined by National Instrument 43-101 being a member of the Australian Institute of Geoscientists (Membership #6001). Mr. Weedon has reviewed and approved the scientific and technical information contained in this news release. Mr. Weedon has verified the data disclosed, including the sampling, analytical and test data underlying the information or opinions contained herein by reviewing geochemical and geological databases and reviewing diamond drill core. There were no limitations to the verification process.

About Fortuna Silver Mines Inc.

<u>Fortuna Silver Mines Inc.</u> is a Canadian precious metals mining company with five operating mines in Argentina, Burkina Faso, Côte d'Ivoire, Mexico, and Peru. Sustainability is integral to all our operations and relationships. We produce gold and silver and generate shared value over the long-term for our stakeholders through efficient production, environmental protection, and social responsibility. For more information, please visit our website.

ON BEHALF OF THE BOARD

Jorge A. Ganoza President, CEO, and Director Fortuna Silver Mines Inc.

Investor Relations:

Carlos Baca | info@fortunasilver.com | www.fortunasilver.com | X | LinkedIn | YouTube

Forward-looking Statements

This news release contains forward-looking statements which constitute "forward-looking information" within the meaning of applicable Canadian securities legislation and "forward-looking statements" within the meaning of the "safe harbor" provisions of the Private Securities Litigation Reform Act of 1995 (collectively, "Forward-looking Statements"). All statements included herein, other than statements of historical fact, are Forward-looking Statements and are subject to a variety of known and unknown risks and uncertainties which could cause actual events or results to differ materially from those reflected in the Forward-looking Statements. The Forward-looking Statements in this news release include, without limitation, statements about the potential to increase the overall footprint of the Area A prospect and the Company's plans for the Diamba Sud Gold Project in 2024; statements regarding potential long term underground development at Ancien and at Sunbird at the Séguéla Mine; the Company's plans to conduct further work at Ancien and at Sunbird during 2024; the Company's objectives for the current drilling program at the Diamba Sud Gold Project and expectations regarding additional drilling programs budgeted for 2024; the Company's business strategy, plans and outlook; the merit of the Company's mines and mineral properties; mineral resource and reserve estimates; timelines; the future financial or operating performance of the Company; expenditures; approvals and other matters. Often, but not always, these Forward-looking Statements can be identified by the use of words such as "estimated", "potential", "open", "future", "assumed", "projected", "used", "detailed",

"has been", "gain", "planned", "reflecting", "will", "containing", "remaining", "to be", or statements that events, "could" or "should" occur or be achieved and similar expressions, including negative variations. Forward-looking Statements involve known and unknown risks, uncertainties and other factors which may cause the actual results, performance, or achievements of the Company to be materially different from any results, performance or achievements expressed or implied by the Forward-looking Statements. Such uncertainties and factors include, among others, changes in general economic conditions and financial markets; changes in prices for silver, gold and other metals; the timing and success of the Company's proposed exploration programs; technological and operational hazards in Fortuna's mining and mine development activities; risks inherent in mineral exploration; fluctuations in prices for energy, labour, materials, supplies and services; fluctuations in currencies; uncertainties inherent in the estimation of mineral reserves, mineral resources, and metal recoveries; the possibility that the ruling in favor of Compañia Minera Cuzcatlan S.A. de C.V. to reinstate the environmental impact authorization at the San Jose Mine will be successfully appealed; the Company's ability to obtain all necessary permits, licenses and regulatory approvals in a timely manner; governmental and other approvals; political unrest or instability in countries where Fortuna is active; labor relations issues; as well as those factors discussed under "Risk Factors" in the Company's Annual Information Form for the financial year ended December 31, 2022. Although the Company has attempted to identify important factors that could cause actual actions, events, or results to differ materially from those described in Forward-looking Statements, there may be other factors that cause actions, events or results to differ from those anticipated, estimated or intended. Forward-looking Statements contained herein are based on the assumptions, beliefs, expectations and opinions of management, including but not limited to expectations regarding the results from the exploration programs conducted at the Séquéla Mine, the San Jose Mine, and the Diamba Sud Gold Project; expected trends in mineral prices and currency exchange rates; the accuracy of the Company's information derived from its exploration programs at the Company's mineral properties; current mineral resource and reserve estimates; the presence and continuity of mineralization at the Company's properties; that the Company's activities will be in accordance with the Company's public statements and stated goals; that there will be no material adverse change affecting the Company or its properties; that all required approvals will be obtained; that there will be no significant disruptions affecting operations and such other assumptions as set out herein. Forward-looking Statements are made as of the date hereof and the Company disclaims any obligation to update any Forward-looking Statements, whether as a result of new information, future events or results or otherwise, except as required by law. There can be no assurance that Forward-looking Statements will prove to be accurate, as actual results and future events could differ materially from those anticipated in such statements. Accordingly, investors should not place undue reliance on Forward-looking Statements.

Cautionary Note to United States Investors Concerning Estimates of Reserves and Resources

Reserve and resource estimates included in this news release have been prepared in accordance with National Instrument 43-101 Standards of Disclosure for Mineral Projects ("NI 43-101") and the Canadian Institute of Mining, Metallurgy, and Petroleum Definition Standards on Mineral Resources and Mineral Reserves. NI 43-101 is a rule developed by the Canadian Securities Administrators that establishes standards for public disclosure by a Canadian company of scientific and technical information concerning mineral projects. Unless otherwise indicated, all mineral reserve and mineral resource estimates contained in the technical disclosure have been prepared in accordance with NI 43-101 and the Canadian Institute of Mining, Metallurgy and Petroleum Definition Standards on Mineral Resources and Reserves. Canadian standards, including NI 43-101, differ significantly from the requirements of the Securities and Exchange Commission, and mineral reserve and resource information included in this news release may not be comparable to similar information disclosed by U.S. companies.

Hole ID	Easting (WGS84_29N)	Northing (WGS84_29N)	Elevation (m)	EOH Depth (m)	UTM Azimuth	Dip	Depth From (m)	Depth To (m)	Drilled Width (m)	ETW (m)	Au (ppm)	Hole Type	Area
SGRD1656	743307	888573	352	225.7	277	-60	180	182	2	1.4	5.54	RCD	Anci
						incl	180	181	1	0.7	10.30	RCD	Anci
SGRD1657	743346	888518	349	276.1	277	-60	228	231	3	2.1	2.76	RCD	Anci
							239	250	11	7.7	27.06	RCD	Anci
						incl	241	243	2	1.4	138.45	RCD	Anci
SGRD1658	743366	888467	348	348	277	-55	268	269	1	0.7	5.47	RCD	Anci
SGRD1659	743335	888395	354	336.3	277	-55	270	274	4	2.8	2.99	RCD	Anci
							306	322	16	11.2	1.14	RCD	Anci

Appendix 1: Séguéla Mine, Côte d'Ivoire

SGRD1661 743409	888381	351	440.4 277	-55 339	342	3	2.1	14.76	RCD And
				incl 339	340	1	0.7	37.80	RCD And
				347	369	22	15.4	22.90	RCD And
				incl 353	354	1	0.7	23.50	RCD And
				incl 357	362	5	3.5	87.96	RCD And
SGRD1663 888361	743405	356	400.4 277	-55 346	374	28	19.6	5.98	RCD And
				incl 352	354	2	1.4	12.95	RCD And
				and 358	360	2	1.4	16.38	RCD And
				and 362	364	2	1.4	36.35	RCD And
SGRD1664 743402.76	888335	371.24	400.2 2.77	-55 361	383	22	15.4	2.23	RCD And
				incl 368	369	1	0.7	11.25	RCD And
				and 370	371	1	0.7	10.15	RCD And
SGRD1665 743419	888307	370	430.8 277	-55 NSI					RCD And
SGRD1666 743368	888286	358	400.5 277	-55 362	370	8	5.6	1.60	RCD And
SGRC1682 743089	901800	396	140 270	-55 65	73	8	5.6	16.70	RC Bad
				incl 70	71	1	0.7	121.00	RC Bad
				77	79	2	1.4	13.45	RC Bad
				incl 77	78	1	0.7	24.20	RC Bad
				83	86	3	2.1	13.01	RC Bad
				incl 85	86	1	0.7	33.00	RC Bad
SGRC1683 743095	901850	389	130 270	-55 59	63	4	2.8	1.66	RC Bad
				67	76	9	6.3	17.32	RC Bad
				incl 67	69	2	1.4	49.50	RC Bad
				and 71	72	1	0.7	44.60	RC Bad
				86	92	6	4.2	2.28	RC Bad
SGRC1685 743130	901950	385	190 270	-55 75	79	4	2.8	2.46	RC Bad
SGRD1686 743128	901851	386	192.1 268	142	144	2	1.4	4.86	RCD Bad
				189	192.1	3.1	2.2	1.79	RCD Bad
SGRD1687 743165	901950	383	270 270	-55 NSI					RCD Bad
SGRD1688 743161	902003	391	268 268	-51 NSI					RCD Bad
SGRD1689 743128	902003	393	190.7 270	-55 159	162	3	2.1	10.71	RCD Bad
				incl 161	162	1	0.7	29.60	RCD Bad
SGRD1690 743133	902003	396	310.3 268	-52 NSI					RCD Bad
SGRC1691 742887	893798	431	60 90	-60 NSI					RC Sur
SGRC1692 742861	893797	432	110 90	-60 NSI					RC Sur
SGRD1693 742584	892987	518	420.5 90	371	381	10	7.0	2.88	RCD Sur
				395	397	2	1.4	5.57	RCD Sur
				incl 395	396	1	0.7	10.10	RCD Sur
SGRD1694 742510	892710	539	134			0	0.0		RCD Sur
SGRD1695 742532	892511	538	375.1 90	-60 341	362	21	14.7	4.99	RCD Sur
				incl 347	350	3	2.1	27.70	RCD Sur
SGRD1696 742573	892512	547	310.3 90	-60 235	240	5	3.5	4.91	RCD Sur
		-		incl 236	237	1	0.7	16.90	RCD Sur
				263	265	2	1.4	6.17	RCD Sur
				280	285	5	3.5	2.82	RCD Sur
				incl 284	285	1	0.7	12.70	RCD Sur
SGRD1697 742534	892461	544	390 90	-60 NSI			•		RCD Sur
SGRD1698 742577	892460	520	300 4 90	-60 200	212	12	84	4.87	RCD Sur
2 3.12 .000 1 12011	202100			incl 200	201	1	07	14 15	RCD Sur
				and 203	204	1	07	24 50	RCD Sur
				218	236	18	12.6	1.54	RCD Sur
				210	253	11	77	0.98	RCD Sur
				272	200			0.00	

Notes:

- 1. EOH: End of hole

2. NSI: No significant intercepts
3. ETW: Estimated true width
4. Depths and widths reported to nearest significant decimal place

Appendix 2: Diamba Sud Gold Project, Senegal

Hole ID	Easting (WGS84_29N)	Northing (WGS84_29N)	Elevation (m)	EOH Depth (m)	UTM Azimuth	Dip	Depth From (m)	Depth To (m)	Drilled Width (m)	ETW (m)	Au (ppm)	Hole Type	Area
DSDD129	233200	1429609	186	246	90	-60	12	25	13	11.7	9.91	DD	Area
						incl	16	18	2	1.8	43.45	DD	Area
							90	92.7	2.7	2.4	5.56	DD	Area
						incl	92	92.7	0.7	0.6	11.80	DD	Area
							122	135	13	11.7	0.90	DD	Area
							161	168	7	6.3	0.74	DD	Area
							188	193	5	4.5	1.57	DD	Area
DSDD130	233151	1429612	186	219	90	-60	63	76	13	11.7	2.62	DD	Area
						incl	69	70	1	0.9	10.35	DD	Area
							83	94	11	9.9	0.57	DD	Area
							155	187	32	28.8	1.02	DD	Area
							191	197	6	5.4	4.81	DD	Area
						incl	193	194	1	0.9	19.80	DD	Area
DSDD131	233283	1429607	184	162	90	-60	24	29	5	4.5	1.08	DD	Area
							96.4	102.6	6.2	5.6	9.07	DD	Area
						incl	96.4	98	1.6	1.4	14.35	DD	Area
							113	123.5	10.5	9.5	1.98	DD	Area
DSDD132	233161	1429583	185	210	90	-60	80	87.8	7.8	7.0	2.12	DD	Area
							147	157	10	9.0	0.71	DD	Area
DSDD133	233241	1429555	184	174	90	-60	89.5	95	5.5	5.0	8.67	DD	Area
						incl	90	92	2	1.8	16.46	DD	Area
							103	107.8	4.8	4.3	2.92	DD	Area
							111	112	1	0.9	21.50	DD	Area
							116	124	8	7.2	2.90	DD	Area
						incl	117	118.4	1.4	1.3	11.72	DD	Area
							144	147	3	2.7	2.25	DD	Area
DSDD134	233210	1429554	184	189	90	-60	9	16	7	6.3	5.83	DD	Area
						incl	11	13	2	1.8	11.75	DD	Area
							28	29.8	1.8	1.6	3.20	DD	Area
							40	52	12	10.8	1.36	DD	Area
							57	61	4	3.6	1.92	DD	Area
							106	117	11	9.9	2.08	DD	Area
						incl	106.6	107.5	0.9	0.8	13.30	DD	Area
							125	132.5	7.5	6.8	1.24	DD	Area
DSDD135	233184	1429510	184	200	90	-60	86	93.8	7.8	7.0	1.33	DD	Area
							106	107.65	1.65	1.5	5.21	DD	Area
							119	126	7	6.3	3.14	DD	Area
							183.7	189.05	5.35	4.8	1.14	DD	Area
DSDD136	233301	1429551	182	131	90	-60	54	62	8	7.2	0.83	DD	Area
							105.15	111	5.85	5.3	4.61	DD	Area
						incl	106	107	1	0.9	19.10	DD	Area

DSR486	233252	1429610	186	162	90	-60	9 100	13 109	4 9	3.6 8.1	1.31 0.80	RC RC	Area Area
DOD (07	000040	4 400 000	400	400			122	142	20	18.0	1.65	RC	Area
DSR487	233313	1429609	182	132	90	-60	3	11	8	7.2	5.18	RC	Area
						Incl	3	4	1	0.9	11.80	RC	Area /
							97	114	17	15.3	2.26	RC	Area
DSR488	233301	1429580	182	138	90	-60	109	117	8	7.2	1.22	RC	Area
							122	126	4	3.6	2.09	RC	Area
DSR489	233247	1429582	185	156	90	-60	4	13	9	8.1	1.84	RC	Area
							47	50	3	2.7	19.78	RC	Area
							110	112	2	1.8	3.53	RC	Area
							118	125	7	6.3	1.37	RC	Area /
							130	132	2	1.8	2.79	RC	Area /
DSR490	233191	1429585	185	210	90	-60	7	40	33	29.7	3.09	RC	Area
							62	68	6	5.4	2.84	RC	Area
						incl	63	64	1	0.9	11.50	RC	Area
							116	138	22	19.8	1.83	RC	Area
						incl	117	118	1	0.9	11.05	RC	Area
							160	171	11	9.9	1.08	RC	Area
							176	184	8	7.2	1.27	RC	Area
							188	209	21	18.9	1 00	RC	Area
DSR491	233301	1429510	180	144	90	-60	66	95	29	26.1	3.89	RC	Area
DOILIOI	200001	1120010	100		00	incl	68	69	1	<u>0</u> 0.1	22 30	RC	Δrea /
						and	77	78	1	0.0	21 90	RC	
						and	104	110	15	135	5 70	RC	Area
						incl	104	117	3	27	17 52	PC	Area
00000	2222/5	1/20511	181	162	90	-60	117	126	12	2. <i>1</i>	3 36	PC	Area
D31(492	200240	1429311	101	102	30	-00	1/5	120	13	11.7	0.80	PC	Area
D6D103	222201	1420429	190	120	00	60	90	02	2	27	2.15		Aroa
	232201	1429430	176	162	90	-00	140	111	J 4	2.1	1 /1		Aroa
	233210	1429430	170	102	90	-00	NOI	144	4	5.0	1.41		Area
	233170	1429412	175	123	90	-00	146	100	4	26	0 47		Area
D3R490	233109	1429303	177	191	90	-00	100	120	4	3.0	2.47		Area
						inal	120	100	10	9.0	4.00		Area
	000040	4 400050	475		00		132	133	1	0.9	22.60	RC DO	Area
DSR497	233213	1429359	175	144	90	-60	NSI					RC	Area
DSR498	233239	1429385	174	150	90	-60	NSI	~-		~ -		RC	Area /
DSR499	233336	1429612	1//	100	90	-60	22	25	3	2.7	3.21	RC	Area /
DSR500	233357	1429581	179	120	90	-60	110	115	5	4.5	1.11	RC	Area /
DSR501	233328	1429559	177	114	90	-60	NSI					RC	Area
DSR502	233313	1429534	178	126	90	-60	NSI					RC	Area
DSR503	233312	1429482	178	100	90	-60	75	93	18	16.2	7.51	RC	Area
						incl	76	78	2	1.8	19.63	RC	Area
						and	79	80	1	0.9	10.95	RC	Area
						and	84	85	1	0.9	10.15	RC	Area
						and	88	89	1	0.9	12.50	RC	Area
DSR504	233272	1429512	182	140	90	-60	75	77	2	1.8	2.79	RCD	Area
							128	131.5	3.5	3.2	2.29	RCD	Area /
DSR505	233309	1429437	175	90	90	-60	NSI					RC	Area
DSR506	233181	1429554	184	193	90	-60	21	23	2	1.8	3.13	RCD	Area
							36	62	26	23.4	2.96	RCD	Area
							71	80	9	8.1	6.65	RCD	Area
						incl	71	72	1	0.9	13.15	RCD	Area

						and	75	76	1	0.9	12.60	RCD	Area /
						and	78	79	1	0.9	14.40	RCD	Area /
							147	149	2	1.8	2.52	RCD	Area /
							171	177	6	5.4	2.11	RCD	Area /
						incl	174	175	1	0.9	10.30	RCD	Area /
DSR507	233116	1429538	184	168	90	-60	53	64	11	9.9	1.41	RC	Area /
							109	129	20	18.0	1.45	RC	Area /
						incl	127	128	1	0.9	10.75	RC	Area /
DSR508	233078	1429554	185	120	90	-60	NSI					RC	Area /
DSR509	233044	1429554	184	102	90	-60	15	33	18	16.2	0.54	RC	Area /
DSR510	233082	1429577	183	78	90	-60	NSI					RC	Area /

Notes:

EOH: End of hole
NSI: No significant intercepts
ETW: Estimated true width
Depths and widths reported to nearest significant figure

Appendix 3: Yessi vein, San Jose Mine, Mexico

Hole ID	Easting (NAD27_14N)	Northing (NAD27_14N)	Elevation (m)	EOH Depth (m)	UTM Azimuth	Dip	Depth From (m)	Depth To (m)	Drilled Width (m)	ETW (m)	Au (ppm)	Ag (ppm)	Ag Eq (pp
SJOM-1348	745297	1847651	1236	308	84	-39	256.32	307.65	55.68	33.3	0.72	90	14
SJOM-1357	745297	1847650	1236	267	92	-26	167.30	190.18	22.88	7.1	1.80	60	20
SJOM-1366A	745297	1847650	1236	868	95	-28	464.10	465.70	1.60	0.2	1.58	195	32
							573.45	592.50	10.45	1.5	0.78	91	15
							599.35	601.90	2.55	0.4	0.75	102	16
							606.55	609.75	3.20	0.4	0.70	96	15
							636.40	643.45	7.05	1.0	1.22	161	25
SJOM-1399	745298	1847649	1237	479	104	-8	131.85	135.60	3.75	0.9	1.22	130	22
SJOM-1404	745298	1847649	1237	433	109	-8	NSI						
SJOM-1408	745298	1847649	1236	540	106	-23	355.35	360.30	1.95	0.3	0.80	74	138
							390.50	395.30	4.40	0.7	1.11	131	219
							396.95	400.35	2.75	0.4	1.05	128	21
							415.75	420.05	3.65	0.2	1.39	175	28
							426.70	430.00	3.30	0.5	1.50	208	328
							471.25	472.3	1.05	0.2	2.40	275	46
SJO-1417	746050	1847647	1543	689	239	-51	579.55	580.35	0.80	0.5	4.61	489	858
							600.35	601.40	1.05	0.6	1.40	140	25
SJOM-1418	745298	1847649	1236	674	107	-30	406.00	407.50	1.50	0.8	1.13	95	18
SJO-1420	746046	1847637	1543	796	237	-61	NSI						
SJOM-1422	745297	1847651	1236	456	91	-15	222.85	225.70	2.85	1.1	0.57	61	10
SJO-1430	745885	1847912	1538	789	190	-61	532.10	533.75	1.65	0.9	0.61	84	13
							593.50	595.65	2.15	1.1	8.26	770	14:
							605.60	608.90	3.30	1.7	0.70	90	140
							668.85	676.75	7.90	4.0	1.25	150	250
							679.95	680.55	0.6	0.3	2.11	170	339
SJOM-1428	745298	1847649	1236	479	114	-10	342.75	400.00	57.25	17.0	2.48	347	54
						Incl	367.55	368.86	1.31	0.4	6.26	620	11
						and	382.95	384.00	1.05	0.3	1.98	307	46
						and	384.73	386.30	1.57	0.5	11.27	1344	22

						and 391.85 393.37 1.52	0.5	11.07	1137	202
						and 393.37 394.50 1.13	0.3	2.50	314	514
						and 394.50 395.33 0.83	0.2	9.42	774	15
						and 398.42 400.00 1.58	0.5	32.00	5905	840
SJO-1431	745885	1847912	1538	667	220	-45 554.20 554.50 0.30	0.3	5.38	576	10
						601.30 607.85 6.55	5.2	1.02	114	19
						incl 602.85 603.15 0.30	0.2	7.16	838	14
						and 603.45 603.75 0.30	0.2	1.18	146	24(
						and 605.55 606.05 0.50	0.4	1.45	147	26
						and 606.05 606.40 0.35	0.3	1.29	136	239

Notes:

- 1. EOH: End of hole
- 2. NSI: No significant intercepts
- 3. ETW: Estimated true width

4. Ag Eq is calculated using a factor of 80:1 using metal prices of US\$1,950/oz for gold with 90% metallurgical recovery and US\$24.5/oz for silver with 91% metallurgical recovery

5. Depths and widths reported to nearest significant decimal place

Dieser Artikel stammt von <u>Rohstoff-Welt.de</u> Die URL für diesen Artikel lautet: <u>https://www.rohstoff-welt.de/news/459520--Fortuna-intersects-88-g~t-Au-over-3.5m-at-the-Sgula-Mineand-provides-exploration-update.html</u>

Für den Inhalt des Beitrages ist allein der Autor verantwortlich bzw. die aufgeführte Quelle. Bild- oder Filmrechte liegen beim Autor/Quelle bzw. bei der vom ihm benannten Quelle. Bei Übersetzungen können Fehler nicht ausgeschlossen werden. Der vertretene Standpunkt eines Autors spiegelt generell nicht die Meinung des Webseiten-Betreibers wieder. Mittels der Veröffentlichung will dieser lediglich ein pluralistisches Meinungsbild darstellen. Direkte oder indirekte Aussagen in einem Beitrag stellen keinerlei Aufforderung zum Kauf-/Verkauf von Wertpapieren dar. Wir wehren uns gegen jede Form von Hass, Diskriminierung und Verletzung der Menschenwürde. Beachten Sie bitte auch unsere AGB/Disclaimer!

Die Reproduktion, Modifikation oder Verwendung der Inhalte ganz oder teilweise ohne schriftliche Genehmigung ist untersagt! Alle Angaben ohne Gewähr! Copyright © by Rohstoff-Welt.de -1999-2025. Es gelten unsere <u>AGB</u> und <u>Datenschutzrichtlinen</u>.