Ivanhoe Mines Updates Ongoing Exploration and Development Work at Its Kamoa Copper Discovery in the Democratic Republic of Congo's Southern Province of Katanga

13.05.2014 | Marketwired

Recent drill hole intercepted 15.7 metres true thickness of 7.04% copper in Kansoko Sud high-grade area that will be the focus of initial mining

LUBUMBASHI, DEMOCRATIC REPUBLIC OF CONGO--(Marketwired - May 13, 2014) - Robert Friedland, Executive Chairman of Ivanhoe Mines (TSX:IVN), and Lars-Eric Johansson, Chief Executive Officer, today issued a summary of significant, ongoing exploration and development activities at the company's Tier 1 Kamoa copper discovery, near the mining centre of Kolwezi in the Democratic Republic of Congo's southern province of Katanga.

Mr. Friedland said the work has further confirmed that the focus of the company's initial mine development at Kamoa will be on the high-grade Kansoko Sud area, where ongoing infill drilling since the last resource estimate was produced in 2012 has defined a thick, near-surface zone of high-grade copper sulphide mineralization that would be amenable to treatment by a conventional copper flotation plant.

One of the 101 infill holes drilled in this area, for which assays were received in April 2014, intercepted 15.7 metres (true width) of 7.04% copper at a 1.5% total copper cut-off.

Infill drilling confirms overall grade and thickness of 2012 resource estimate

Since issuing an updated, independent preliminary economic assessment (PEA) for the Kamoa Project in November 2013, Ivanhoe has concentrated its exploration drilling activities on the acquisition of samples for metallurgical testing, as well as undertaking drilling on 200-metre close-spaced sections in the Kansoko Sud area. Exploration drilling has been directed at infilling those areas identified as primary mining targets in the PEA.

A total of 60 of the 101 holes with assays returned since the release of the updated PEA six months ago were drilled in the Kansoko Sud area, 29 were in Kansoko Centrale, one in Kansoko Nord, nine in Kamoa Sud and two in Makalu. The final composited assay results are included at the end of this news release.

Infill drilling of the initial mining area has confirmed the overall grade and thickness of the December 2012 resource estimate in these areas and has provided invaluable refinement within localized areas. While traditionally modelled on a 1% total copper cut-off to define a selective mineralized zone, the deposit has shown that grade continuity also exists at an elevated 1.5% total copper vertical cut-off, and that a 2.0% vertical total copper cut-off may be feasible in certain areas.

Initial mine economics should benefit from narrower, higher-grade intervals

27.04.2025 Seite 1/9

Recent work defining the selective mineralized zone (SMZ) at higher vertical cut-offs has shown that narrower, higher-grade intervals create more expansive, contiguous zones, which should improve initial mine economics.

A new base case for future engineering studies is being developed using a 1.5% total copper cut-off with a minimum three-metre mining height and a maximum mining constraint of six metres (a single mining cut); incremental mineralization above six metres will be included only if the grade of the incremental mineralization exceeds 2%. This approach was introduced for thicker intercepts, to ensure initial mining cuts would extract only higher-grade material.

Encouraging results of Kansoko Sud infill drilling and Hole DKMC DD860

The initial mine plan produced in the PEA focused initial mining in the shallower portion of Kansoko Sud, an area previously drilled on 400-metre spacings. Since completion of the PEA, Ivanhoe has concentrated on substantially closing the distances to 100-metre spacings on 200-metre-spaced, east-west lines, with the goal of demonstrating grade and structural continuity of this high-grade zone at potentially elevated cut-offs. Drilling is continuing in this area; results to date are extremely encouraging and have confirmed - and in some locations exceeded - the initial results based on holes spaced 400 metres apart.

Included in the new drill results is Hole DD860, which is a PQ-sized parent hole of a series of wedges drilled for comminution. Assay results received for Hole DD860 show a remarkable combination of grade and thickness, with a copper grade of 6.88% over 17.3 metres (16.2 metres true thickness) at a 1% total copper composite cut-off. Using a higher cut-off of 1.5% total copper, the intercept returned 7.04% total copper over 16.8 metres (15.7 metres true thickness). Sections through Hole 860 displayed good continuity of grade and thickness in the north-south and east-west orientations, as shown in the accompanying sections - which also report the elevated, 1.5% total copper composites.

Exploration continuing in 2014

During the remainder of 2014, Ivanhoe intends to continue its detailed infill program in the initial mining area to cover an area of approximately one square kilometre with a 100-metre detailed grid.

Progress on pre-feasibility study, with initial mining at Kansoko Sud

In line with the phased approach to project development outlined in the 2013 updated Kamoa PEA, the Kamoa pre-feasibility study (PFS) is progressing on the basis of an initial three-million-tonne-per-annum (3Mtpa) mine and concentrator.

Reviews of the resource model, combined with results from recent infill drilling at Kansoko Sud, have confirmed grade continuity, which allows the resource model to be constrained at a higher cut-off grade. The focus in planning the early years of mine production continues to be on the near-surface and high-grade material from Kansoko Sud to maximize margins. The 3Mpta mine and concentrator can be split into modules to potentially better match the underground ramp-up and further reduce the pre-production development capital. This will be examined in more detail as part of the pre-feasibility study to provide flexibility to the development of the Kamoa Project.

Work to begin this year on decline to access the Kamoa underground

Preparations are underway to start the first mine-access decline at Kamoa's Kansoko Sud area. The decline is designed to provide access to the high-grade copper resources that would be targeted for the planned first phase of production using the room-and-pillar mining method.

Large-scale underground mining to use room-and-pillar and drift-and-fill methods

Kamoa is considered amenable to large-scale, mechanized mining using a combination of room-and-pillar

27.04.2025 Seite 2/9

and drift-and-fill methods, given the deposit's favourable mining characteristics as derived from the December 2012 mineral resource - including its relatively undeformed, continuous mineralization, local continuity between closely-spaced drill holes and flat-to-moderate dips. The low dip and the flat geometry of the resource make it conducive to room-and-pillar mining in the shallow portions of the deposit, which would transition to drift-and-fill mining in the deeper sections. These conventional mining methods are the accepted industry standards for deposits such as Kamoa.

A minimum mining thickness of 3.5 metres was used for the PEA; any thinner blocks were diluted to 3.5 metres using the average grade of the adjacent hanging wall and footwall blocks. Room-and-pillar panels are designed to be 80 metres wide and 500 metres long, with in-panel extraction ratios ranging from 60% to 80%, depending on the panel depth below surface. Partial extraction of the barrier pillars (up to 50%) is planned at the end of the mining of each section.

The overall extraction ratio in the room-and-pillar areas is expected to be between 56% and 82%, depending on the depth below surface. Higher in-panel extraction ratios of up to 95% are expected within the drift-and-fill areas, with an overall extraction ratio of 85% after partial extraction of barrier pillars.

Kamoa Project description

The Kamoa Project is a newly discovered, very large, stratiform copper deposit with adjacent prospective exploration areas within the Central African Copperbelt, approximately 25 kilometres west of the town of Kolwezi and about 270 kilometres west of the provincial capital of Lubumbashi. Ivanhoe Mines holds its 95% interest in the Kamoa Project through a subsidiary company, Kamoa Copper SPRL. A 5%, non-dilutable interest in Kamoa Copper SPRL was transferred to the DRC government on September 11, 2012, for no consideration, pursuant to the DRC Mining Code. Ivanhoe also has offered to sell an additional 15% interest to the DRC on commercial terms, to be negotiated.

In December 2012, a new, independent mineral resource estimate was prepared for the Kamoa Copper Discovery by AMEC E&C Services, of Reno, Nevada. The new estimate ranked Kamoa as Africa's largest, high-grade copper discovery and the world's largest, undeveloped high-grade copper discovery.

As of January 2013, Ivanhoe Mines had discovered Indicated Mineral Resources of 739 million tonnes grading 2.67% copper, containing 43.5 billion pounds of copper, and Inferred Mineral Resources of 227 million tonnes grading 1.96% copper, containing 9.8 billion pounds of copper. A 1% copper cut-off grade and a minimum vertical mining thickness of three metres were applied in each classification.

Kamoa Mineral Resources December 2012

			T
Copper cut-off	Tonnage (Mt)	Copper Grade	Contained Copper (billion lbs)
	Ir	dicated Resour	ce
3.00%	224	3.85%	19.0
2.00%	550	3.04%	36.9
1.00%	739	2.67%	43.5
	I	nferred Resourc	ce
3.00%	19	3.40%	1.4
2.00%	93	2.64%	5.4
1.00%	227	1.96%	9.8

Note: Mineral Resources have an effective date of December 10, 2012. Harry M. Parker and Gordon Seibel, both SME Registered Members, are the Qualified Persons responsible for the Mineral Resource estimate, which was prepared by Mr. Seibel. Mineral Resources are reported using a total copper cut-off grade of 1% copper and a minimum assumed mining thickness of three metres. A 1% copper cut-off grade is typical of analogue deposits in neighbouring Zambia.

Qualified Person and Quality Control and Assurance

The scientific and technical information in this release has been reviewed and approved by Stephen Torr,

27.04.2025 Seite 3/9

P.Geo., Ivanhoe Mines' Vice President, Project Geology and Evaluation, a Qualified Person under the terms of National Instrument 43-101. Mr. Torr has verified the technical data disclosed in this news release.

Copper assays were determined by mixed-acid digestion with ICP finish at Ultra Trace Geoanalytical Laboratories in Perth, Australia, an ISO 17025-accredited laboratory. Ivanhoe Mines utilized a well-documented system of inserting blanks and standards into the assay stream and has a strict chain of custody and independent laboratory re-check system for quality control. For detailed information about assay methods and data verification measures used to support the scientific and technical information, please refer to the current technical report on the Kamoa Copper Project on the SEDAR profile of Ivanhoe Mines at www.sedar.com.

About Ivanhoe Mines

Ivanhoe Mines, with offices in Canada, the United Kingdom and South Africa, is advancing and developing its three principal projects:

- The Kamoa copper discovery in a previously unknown extension of the Central African Copperbelt in the DRC's Province of Katanga.
- The Platreef Discovery of platinum, palladium, nickel, copper, gold and rhodium on the Northern Limb of the Bushveld Complex in South Africa.
- The historic, high-grade Kipushi zinc, copper and germanium mine, also on the Copperbelt in the DRC, now being drilled and upgraded following an 18-year care-and-maintenance program that ended when Ivanhoe acquired its majority interest in the mine in 2011.

Ivanhoe Mines also is evaluating other opportunities as part of its objective to become a broadly based, international mining company.

Cautionary statement on forward-looking information

Certain statements in this release constitute "forward-looking statements" or "forward-looking information" within the meaning of applicable securities laws, including without limitation, the timing and results of: (i) a pre-feasibility study at the Kamoa Project which contemplates the declaration of a mineral reserve estimate; (ii) plans to start the first underground mine-access decline at the Kamoa Project in 2014; (iii) potential mining plans; and (iv) completion of an infill drill program in 2014 to cover an area of approximately one square kilometre with a 100-metre detailed grid. Such statements involve known and unknown risks, uncertainties and other factors which may cause the actual results, performance or achievements of the company, or industry results, to be materially different from any future results, performance or achievements expressed or implied by such forward-looking statements or information. Such statements can be identified by the use of words such as "may", "would", "could", "will", "intend", "expect", "believe", "plan", "anticipate", "estimate", "scheduled", "forecast", "predict" and other similar terminology, or state that certain actions, events or results "may", "could", "would", "might" or "will" be taken, occur or be achieved. These statements reflect the company's current expectations regarding future events, performance and results and speak only as of the date of this release.

As well, the results of the preliminary economic assessment of the Kamoa Project constitute forward-looking information, including estimates of internal rates of return, net present value, future production, estimates of cash cost, proposed mining plans and methods, mine life estimates, cash flow forecasts, metal recoveries, and estimates of capital and operating costs. Furthermore, with respect to this specific forward-looking information concerning the development of the Kamoa Project, the company has based its assumptions and analysis on certain factors that are inherently uncertain. Uncertainties include among others: (i) the adequacy of infrastructure; (ii) geological characteristics; (iii) metallurgical characteristics of the mineralization; (iv) the ability to develop adequate processing capacity; (v) the price of copper; (vi) the availability of equipment and facilities necessary to complete development, (vii) the cost of consumables and mining and processing equipment; (viii) unforeseen technological and engineering problems; (ix) accidents or acts of sabotage or terrorism; (x) currency fluctuations; (xi) changes in regulations; (xii) the availability and productivity of skilled labour; (xiii) the regulation of the mining industry by various governmental agencies; and (xiv) political factors.

This release also contains references to estimates of Mineral Resources. The estimation of Mineral

27.04.2025 Seite 4/9

Resources is inherently uncertain and involves subjective judgments about many relevant factors. Mineral Resources that are not Mineral Reserves do not have demonstrated economic viability. The accuracy of any such estimates is a function of the quantity and quality of available data, and of the assumptions made and judgments used in engineering and geological interpretation (including estimated future production from the Kamoa Project, the anticipated tonnages and grades that will be mined and the estimated level of recovery that will be realized), which may prove to be unreliable and depend, to a certain extent, upon the analysis of drilling results and statistical inferences that may ultimately prove to be inaccurate. Mineral Resource estimates may have to be re-estimated based on: (i) fluctuations in copper price; (ii) results of drilling, (iii) metallurgical testing and other studies; (iv) proposed mining operations, including dilution; (v) the evaluation of mine plans subsequent to the date of any estimates; and (vi) the possible failure to receive required permits, approvals and licenses.

Forward-looking statements involve significant risks and uncertainties, should not be read as guarantees of future performance or results, and will not necessarily be accurate indicators of whether or not such results will be achieved. A number of factors could cause actual results to differ materially from the results discussed in the forward-looking statements, including, but not limited to, the factors discussed here, as well as unexpected changes in laws, rules or regulations, or their enforcement by applicable authorities; the failure of parties to contracts with the company to perform as agreed; social or labour unrest; changes in commodity prices; and the failure of exploration programs or studies to deliver anticipated results or results that would justify and support continued exploration, studies, development or operations.

Although the forward-looking statements contained in this release are based upon what management of the company believes are reasonable assumptions, the company cannot assure investors that actual results will be consistent with these forward-looking statements. These forward-looking statements are made as of the date of this release and are expressly qualified in their entirety by this cautionary statement. Subject to applicable securities laws, the company does not assume any obligation to update or revise the forward-looking statements contained herein to reflect events or circumstances occurring after the date of this release.

The company's actual results could differ materially from those anticipated in these forward-looking statements as a result of the factors set forth in the "Risk Factors" section and elsewhere in the company's most recent Management's Discussion and Analysis report and Annual Information Form, available at www.sedar.com.

Collar Co-Ordinates for Holes with Assays Received October	1, 2013, to April 12, 2014
--	----------------------------

Borehole ID	Area	Easting	Northing	Elevation
DKMC_DD749	Kansoko Centrale	309046	8804721	1477
DKMC_DD757	Kansoko Centrale	309042	8804904	1478
DKMC_DD762W1	Kansoko Centrale	309239	8804899	1480
DKMC_DD790	Kansoko Centrale	309411	8805327	1484
DKMC_DD791	Kansoko Centrale	309460	8804904	1484
DKMC_DD793	Kansoko Centrale	309240	8805304	1482
DKMC_DD796	Kansoko Centrale	309874	8805322	1487
DKMC_DD798	Kansoko Nord	311205	8809497	1485
DKMC_DD800	Kansoko Centrale	309817	8804953	1489
DKMC_DD801	Kansoko Centrale	309548	8805392	1485
DKMC_DD802	Kansoko Centrale	309435	8805533	1484
DKMC_DD805	Kansoko Centrale	309447	8805764	1480
DKMC_DD806	Kansoko Centrale	309416	8805898	1476
DKMC_DD809	Kansoko Centrale	309872	8805537	1480
DKMC_DD811	Kansoko Centrale	310253	8805938	1484
DKMC_DD812	Kansoko Centrale	309661	8804909	1487
DKMC_DD813	Kansoko Centrale	309851	8805941	1477
DKMC_DD814	Kansoko Centrale	310058	8805746	1479
DKMC_DD815	Kansoko Sud	307602	8802902	1465
DKMC_DD816	Kansoko Sud	307401	8802903	1465
DKMC_DD817	Kansoko Sud	307797	8802702	1464
DKMC_DD818	Kansoko Centrale	310293	8806305	1485
DKMC_DD819	Kansoko Centrale	309107	8805100	1480
DKMC_DD820	Kansoko Sud	308295	8802702	1463
DKMC_DD821	Kansoko Sud	308282	8802306	1458
DKMC_DD822	Kamoa Sud	309000	8807899	1462

27.04.2025 Seite 5/9

	DKMC_DD823	Kansoko Centrale	309855	8805760	1472
	DKMC_DD824	Kamoa Sud	309400	8807899	1468
	DKMC_DD825	Kansoko Sud	307837	8802307	1458
	DKMC_DD826	Kansoko Centrale	309489	8805104	1484
Ī	DKMC_DD827	Kamoa Sud	309999	8807996	1472
	DKMC_DD828	Kansoko Sud	307859	8803500	1473
	DKMC_DD829	Kamoa Sud	309002	8808201	1457
	DKMC_DD830	Kamoa Sud	309399	8808201	1461
	DKMC_DD831	Kansoko Sud	308195	8803499	1475
	DKMC_DD832	Kamoa Sud	309199	8808403	1457
	DKMC_DD833	Kamoa Sud	309799	8808399	1461
	DKMC_DD834	Kansoko Centrale	309128	8804500	1477
	DKMC_DD835	Kansoko Centrale	309909	8806301	1479
	DKMC_DD836	Kansoko Sud	308502	8803300	1470
	DKMC_DD837	Kansoko Sud	308296	8803101	1470
	DKMC_DD838	Kansoko Centrale	308705	8804102	1475
	DKMC_DD840	Kansoko Centrale	308283	8804105	1475
	DKMC_DD841	Kansoko Sud	308708	8803699	1473
	DKMC_DD842	Kansoko Sud	307604	8803695	1474
	DKMC_DD843	Kansoko Sud	307502	8803699	1474
	DKMC_DD844	Kansoko Sud	307402	8803294	1469
	DKMC_DD845	Kansoko Sud	307801	8803894	1474
	DKMC_DD846	Kansoko Sud	307397	8803693	1474
	DKMC_DD847	Kansoko Sud	307500	8803299	1470
_		l	·		

Collar Co-Ordinates for Holes with Assays Received October 1, 2013, to May 12, 2014

Borehole ID	Area	Easting	Northing	Elevation
DKMC_DD848	Kansoko Sud	307502	8803498	1473
DKMC_DD849	Kansoko Sud	307764	8803105	1469
DKMC_DD850	Kansoko Sud	307542	8802902	1465
DKMC_DD851	Kansoko Sud	307744	8802698	1464
DKMC_DD852	Kansoko Sud	307557	8802502	1461
DKMC_DD853	Kansoko Sud	307506	8803096	1467
DKMC_DD854	Kansoko Sud	307647	8802501	1461
DKMC_DD855	Kansoko Sud	307774	8802500	1461
DKMC_DD856	Kansoko Sud	307870	8802499	1461
DKMC_DD857	Kansoko Sud	307799	8802899	1467
DKMC_DD858W5	Kansoko Sud	307598	8803305	1471
DKMC_DD859W5	Kansoko Sud	308000	8803304	1473
DKMC_DD860	Kansoko Sud	307790	8803303	1472
DKMC_DD860W5	Kansoko Sud	307790	8803303	1472
DKMC_DD861	Kansoko Sud	307802	8803103	1469
DKMC_DD862	Kansoko Sud	308273	8803900	1477
DKMC_DD863	Kansoko Sud	308278	8803702	1477
DKMC_DD864W5	Kansoko Sud	307802	8803697	1474
DKMC_DD865	Kansoko Sud	307527	8802303	1458
DKMC_DD866	Kansoko Sud	308072	8802904	1467
DKMC_DD867	Kansoko Sud	308059	8803698	1476
DKMC_DD868	Kansoko Centrale	308918	8804501	1476
DKMC_DD869	Kansoko Sud	308267	8802504	1461
DKMC_DD870	Kansoko Sud	308288	8802901	1466
DKMC_DD871	Kansoko Sud	308057	8802502	1461
DKMC_DD872	Kansoko Sud	307700	8803002	1467
DKMC_DD873	Kansoko Sud	307603	8803003	1467
DKMC_DD874	Kansoko Sud	308168	8803103	1470
DKMC_DD875	Kansoko Centrale	308705	8804299	1476
DKMC_DD876	Kansoko Sud	307602	8803212	1470
DKMC_DD877	Kansoko Sud	307960	8802904	1467
DKMC_DD878	Kansoko Sud	307703	8803301	1471
DKMC_DD879	Kansoko Sud	307965	8803302	1473
DKMC_DD880	Kansoko Sud	307949	8802703	1464
DKMC_DD881	Kansoko Sud	308169	8802898	1466
DKMC_DD882	Kansoko Centrale	309000	8804300	1477
DKMC_DD883	Kansoko Sud	308167	8802699	1463

27.04.2025 Seite 6/9

DKMC_DD884	Kansoko Sud	308120	8803350	1474	l
DKMC_DD885	Kansoko Sud	308377	8803297	1472	l
DKMC_DD886	Kansoko Sud	307461	8802471	1460	ĺ
DKMC_DD887	Kansoko Sud	308377	8802901	1465	l
DKMC_DD888	Kansoko Sud	308025	8802099	1454	l
DKMC_DD889	Kansoko Sud	308322	8803301	1472	ĺ
DKMC_DD890	Kansoko Sud	307771	8802879	1466	l
DKMC_DD891	Kansoko Sud	308009	8803054	1469	ĺ
DKMC_DD892	Makalu	307844	8801100	1426	ĺ
DKMC_DD893	Kamoa Sud	310400	8807899	1476	l
DKMC_DD894	Kansoko Centrale	311631	8805207	1513	l
DKMC_DD895	Makalu	308253	8801097	1431	l
DKMC_DD896	Kamoa Sud	309635	8807205	1470	ĺ
DKMC_DD902	Kansoko Sud	307596	8802392	1458	ĺ

Drill Hole Composite Results for Assays Received October 1, 2013, to May 12, 2014

		Drill Hole Compo	site Results for A	Assays Received	October 1, 2013	3, to May 12, 201	4		
		1% Tota	l Copper 3m Cor				1.5% Total	Copper 3m - 6m	
BHID	From	То	Length	Total Copper	True Thickness	From	То	Length	Total Cop
DKMC_DD74	9 437.00	441.50	4.5	4.06	4.44	437.0	441.5	4.5	4.06
DKMC_DD75	7 416.77	422.00	5.2	4.46	5.11	417.5	422.0	4.5	5.02
DKMC_DD76	2W1467.06	475.00	7.9	4.24	7.92	467.6	474.0	6.5	4.81
DKMC_DD79	0 449.00	455.81	6.8	2.81	6.54	449.0	455.8	6.8	2.81
DKMC_DD79	1 530.00	534.00	4.0	4.86	3.95	530.0	534.0	4.0	4.86
DKMC_DD79	3 399.00	407.50	8.5	5.15	8.46	399.0	406.0	7.0	5.93
DKMC_DD79	6 572.00	580.43	8.4	6.14	8.25	574.0	580.4	6.4	7.50
DKMC_DD79	8	No Mir	neralization - On	Dome			No Mi	neralization - Or	Dome
DKMC_DD80	0 621.00	632.00	11.0	3.14	10.87	623.5	632.0	8.5	3.70
DKMC_DD80	1 465.50	478.48	13.0	2.58	12.66	468.2	478.5	10.3	2.82
DKMC_DD80	<u> </u>	424.00	13.0	2.04	12.81	413.0	421.0	8.0	2.46
DKMC_DD80		388.18	14.2	2.73	13.80	377.0	387.3	10.3	3.23
DKMC_DD80	Ē	341.96	8.0	4.85	7.79	335.0	341.1	6.1	5.88
DKMC_DD80	<u> </u>	536.80	12.8	3.48	12.50	526.6	536.8	10.2	3.99
DKMC_DD81	<u> </u>	561.87	5.7	4.86	5.54	556.2	561.9	5.7	4.86
DKMC_DD81	<u> </u>	592.30	5.3	5.18	5.23	588.0	591.6	3.6	6.98
DKMC_DD81	i	443.50	12.5	2.46	12.03	432.0	437.5	5.5	4.18
DKMC_DD81		554.50	4.5	2.90	4.39	551.1	554.5	3.4	3.41
DKMC_DD81	DD81 <mark>5 In Zone of Leaching In Zone of Lea</mark>				Zone of Leachi	•			
DKMC_DD81	!	_	No Mineralization					No Mineralizatio	_
DKMC_DD81	<u> </u>	130.00	12.5	4.3	11.86	117.5	130.0	12.5	4.3
DKMC_DD81	<u> </u>	515.08	10.1	5.02	9.92	507.0	515.1	8.1	5.93
DKMC_DD81	<u> </u>	404.70	6.7	4.70	6.65	398.4	404.7	6.3	4.93
DKMC_DD82	<u> </u>	279.43	4.4	1.87	4.42	276.0	279.0	3.0	2.27
DKMC_DD82		243.17	3.2	1.29	3.10	240.0	243.2	3.2	1.29
DKMC_DD82	<u> </u>	226.71	3.7	2.23	3.65	223.0	226.1	3.1	2.44
DKMC_DD82	<u> </u>	470.85	6.9	2.90	6.67	467.0	470.9	3.9	3.81
DKMC_DD82		253.50	3.5	3.21	3.37	250.0	253.0	3.0	3.53
DKMC_DD82	<u> </u>	169.65	9.7	3.07	9.45	162.0	167.7	5.7	4.29
DKMC_DD82	<u> </u>	505.00	6.0	3.58	5.88	500.0	504.0	4.0	4.74
DKMC_DD82	•	300.73	8.7	6.78	8.10	292.0	299.5	8.0	7.25
DKMC_DD82	<u>.</u>	217.00	9.0	3.40	8.99	208.0	216.0	8.0	3.68
DKMC_DD82	Ē	165.50	3.5	2.85	3.44	162.0	165.5	3.0	3.14
DKMC_DD83	•	174.69	3.7	2.92	3.62	171.0	174.7	3.7	2.92
DKMC_DD83		307.22	12.2	1.95	12.16	301.6	307.2	5.6	2.90
DKMC_DD83		153.08	3.1	3.32	3.01	150.0	153.1	3.1	3.32
DKMC_DD83		160.00	7.0	4.58	6.83	153.0	159.0	6.0	5.10
DKMC_DD83	:	488.00	7.0	4.66	6.98	482.0	488.0	6.0	5.25
DKMC_DD83	•	389.20	4.0	3.03	3.96	385.2	389.2	4.0	3.03
DKMC_DD83		380.00	7.0	1.48	6.97	374.0 201.0	377.0 304.0	3.0	1.63
DKMC_DD83		304.00	3.0	1.67	2.99	301.0 388.0	304.0	3.0	1.67 3.73
DKMC_DD83		391.50	4.5 5.5	3.18	4.50	274.5	391.5	3.5	:
DKMC_DD84	•	280.00	5.5 8.4	1.74	5.48 8.40	274.5 407.0	279.5 410.4	5.0 3.4	1.80
DKMC_DD84	<u>.</u>	410.40 149.00	8.4	1.49	8.40	<u> </u>	410.4 149.0	3.4	2.04 3.81
DVINIC_DD84	2 145.00	149.00	4.0	3.81	3.83	145.0	149.0	4.0	3.81

27.04.2025 Seite 7/9

DKMC_DD843	105.00	110.00	5.0	3.48	4.73	105.0	110.0	5.0	3.48
DKMC_DD844		1	No Mineralization	າ				No Mineralization	า
DKMC_DD845	175.00	178.75	3.8	1.21	3.68	175.0	178.8	3.8	1.21
DKMC_DD846	52.00	55.00	3.0	0.83	2.81	52.0	55.0	3.0	0.83
DKMC_DD847	DD847 No Mineralization					•	No Mineralization	1	

Drill Hole Composite Results for Assays Received October 1, 2013, to May 12, 2014

I		1% Tota	I Copper 3m Cor	mposites]	1.5% Total	Copper 3m - 6m	Composites
		I . , , , , , ,		Total Copper	True) 	<u> </u>		Total Cop
BHID	From	То	Length		Thickness	From	То	Length	<u> </u>
DKMC_DD84		94.00	7.5	6.65	7.02	86.5	91.0	4.5	6.90
DKMC_DD84		178.00	8.0	1.32	7.92	170.0	173.8	3.8	1.53
DKMC_DD85	0		No Mineralization	า				No Mineralizatio	
DKMC_DD85	1 98.00	115.33	17.3	2.05	17.28	111.0	115.3	4.3	3.72
DKMC_DD85	2	I	No Mineralization	า				No Mineralizatio	n
DKMC_DD85	3	In	Zone of Leachir	ng			Ir	n Zone of Leachi	ng
DKMC_DD85	4 84.54	88.53	4.0	3.24	3.99	84.5	88.0	3.5	3.57
DKMC_DD85	5 112.00	121.00	9.0	5.85	8.98	114.0	121.0	7.0	7.06
DKMC_DD85	6 130.00	143.00	13.0	2.60	12.96	133.2	142.0	8.8	3.11
DKMC_DD85		186.00	3.5	1.03	3.22	182.5	186.0	3.5	1.03
DKMC_DD85		100.00	9.5	4.86	8.76	90.6	95.0	4.5	9.17
DKMC_DD85		260.33	9.2	3.80	8.77	253.0	260.3	7.3	4.39
DKMC_DD86		178.31	17.3	6.88	16.23	161.5	178.3	16.8	7.04
DKMC_DD86		176.50	11.7	5.81	11.07	164.8	176.0	11.2	6.01
DKMC_DD86		190.70	12.2	2.11	11.60	185.0	190.7	5.7	2.52
DKMC_DD86		282.00	7.0	1.99	7.00	278.0	282.0	4.0	2.52
DKMC_DD86		291.00	8.3	1.95	8.26	285.0	290.0	5.0	2.50
DKMC_DD86		199.26	10.3	4.22	10.07	191.0	199.3	8.3	4.85
DKMC_DD86			No Mineralization	1				No Mineralizatio	n .
DKMC_DD86		261.00	9.0	2.74	8.99	258.0	261.0	3.0	5.79
DKMC_DD86		235.43	6.4	2.88	6.38	229.0	235.4	6.4	2.88
DKMC_DD86		433.00	8.0	2.79	7.99	426.0	432.3	6.3	3.19
DKMC_DD86		247.00	3.0	2.04	2.99	244.0	247.0	3.0	2.04
DKMC_DD87		295.00	3.0	1.69	2.98	292.0	295.0	3.0	1.69
DKMC_DD87		192.15	7.5	3.45	7.46	184.7	192.2	7.5	3.45
DKMC_DD87		158.00	3.0	1.54	2.76	155.0	158.0	3.0	1.54
DKMC_DD87		92.00	3.0	0.62	2.75	89.0	92.0	3.0	0.62
DKMC_DD87		276.00	9.0	2.94	8.99	268.0	274.0	6.0	3.78
DKMC_DD87		389.00	4.9	3.58	4.86	385.0	388.3	3.3	4.77
DKMC_DD87		108.00	3.0	10.54	2.76	105.0	108.0	3.0	10.54
DKMC_DD87		242.12	10.1	2.23	9.99	239.0	242.1	3.1	4.69
DKMC_DD87		135.50	9.0	7.00	8.40	126.5	135.0	8.5	7.31
DKMC_DD87		230.88	7.9	3.67	7.86	224.0	230.9	6.9	3.91
DKMC_DD88		172.50	3.2	1.32	3.12	169.3	172.5	3.2	1.32
DKMC_DD88		278.00	4.0 6.0	4.36	4.02	274.0	278.0	4.0	4.36
1		488.00 247.02	6.0 3.0	4.50	5.86 2.99	482.6 244.0	487.0 247.0	4.4	5.71
DKMC_DD88		247.02 291.77	3.0 7.3	2.22 3.93	2.99 6.98	244.0 285.3	247.0 291.8	3.0 6.5	2.22 4.25
DKMC_DD88		347.00	8.0	1.58	7.98	343.6	347.0	3.4	2.06
DKMC_DD88			No Mineralization		1.30]		No Mineralizatio	
DKMC_DD88				1	2.50	200 0			
DKMC_DD88		312.50 271.51	3.6 11.5	1.43 4.35	3.59 10.71	308.9 260.0	312.5 271.5	3.6 11.5	1.43 4.35
DKMC_DD88		332.40	8.9	2.69	8.85	327.7	331.9	4.3	4.33
DKMC_DD89		163.00	3.0	0.18	0.05 2.97	160.0	163.0	3.0	0.18
DKMC_DD89		229.50	7.5	4.62	7.32	222.0	229.5	7.5	4.62
DKMC_DD89		367.50	3.3	3.99	3.13	364.2	367.5	3.3	3.99
DKMC_DD89		389.96	3.0	1.53	2.93	387.0	390.0	3.0	1.54
DKMC_DD89		1026.78	4.8	3.66	4.69	1022.5	1026.8	4.3	3.93
DKMC_DD89		586.85	6.9	3.26	6.58	580.0	586.9	6.9	3.26
DKMC_DD89		346.84	5.3	3.23	5.24	342.0	346.8	4.8	3.23
DKMC_DD9d		102.00	3.0	1.35	2.93	99.0	102.0	3.0	1.48
20_0000	_ 00.00	102.00		1.00			102.0		1.70

27.04.2025 Seite 8/9

Contact

Ivanhoe Mines Ltd. - Investors Bill Trenaman +1.604.331.9834 Ivanhoe Mines Ltd. - Media North America: Bob Williamson +1.604.512.4856 Ivanhoe Mines Ltd. - Media South Africa: Jeremy Michaels +27.11.088.4300

Dieser Artikel stammt von Rohstoff-Welt.de

Website www.ivanhoemines.com

Die URL für diesen Artikel lautet: https://www.rohstoff-welt.de/news/173362--lvanhoe-Mines-Updates-Ongoing-Exploration-and-Development-Work-at-Its-Kamoa-Copper-Discovery-in-the-Dem">https://www.rohstoff-welt.de/news/173362--lvanhoe-Mines-Updates-Ongoing-Exploration-and-Development-Work-at-Its-Kamoa-Copper-Discovery-in-the-Dem">https://www.rohstoff-welt.de/news/173362--lvanhoe-Mines-Updates-Ongoing-Exploration-and-Development-Work-at-Its-Kamoa-Copper-Discovery-in-the-Dem">https://www.rohstoff-welt.de/news/173362--lvanhoe-Mines-Updates-Ongoing-Exploration-and-Development-Work-at-Its-Kamoa-Copper-Discovery-in-the-Dem">https://www.rohstoff-welt.de/news/173362--lvanhoe-Mines-Updates-Ongoing-Exploration-and-Development-Work-at-Its-Kamoa-Copper-Discovery-in-the-Dem">https://www.rohstoff-welt.de/news/173362--lvanhoe-Mines-Updates-Ongoing-Exploration-and-Development-Work-at-Its-Kamoa-Copper-Discovery-in-the-Dem">https://www.rohstoff-welt.de/news/173362--lvanhoe-Mines-Updates-Ongoing-Exploration-and-Development-Work-at-Its-Kamoa-Copper-Discovery-in-the-Dem">https://www.rohstoff-welt.de/news/173362--lvanhoe-Mines-Updates-Ongoing-Exploration-and-Development-Work-at-Its-Kamoa-Copper-Discovery-in-the-Dem">https://www.rohstoff-welt.de/news/173362--lvanhoe-Mines-Updates-Ongoing-Exploration-and-Development-Work-at-Its-Kamoa-Copper-Discovery-in-the-Dem">https://www.rohstoff-welt.de/news/173362--lvanhoe-Mines-Updates-Ongoing-Exploration-and-Development-Mines-Updates-Mine

Für den Inhalt des Beitrages ist allein der Autor verantwortlich bzw. die aufgeführte Quelle. Bild- oder Filmrechte liegen beim Autor/Quelle bzw. bei der vom ihm benannten Quelle. Bei Übersetzungen können Fehler nicht ausgeschlossen werden. Der vertretene Standpunkt eines Autors spiegelt generell nicht die Meinung des Webseiten-Betreibers wieder. Mittels der Veröffentlichung will dieser lediglich ein pluralistisches Meinungsbild darstellen. Direkte oder indirekte Aussagen in einem Beitrag stellen keinerlei Aufforderung zum Kauf-/Verkauf von Wertpapieren dar. Wir wehren uns gegen jede Form von Hass, Diskriminierung und Verletzung der Menschenwürde. Beachten Sie bitte auch unsere AGB/Disclaimer!

Die Reproduktion, Modifikation oder Verwendung der Inhalte ganz oder teilweise ohne schriftliche Genehmigung ist untersagt! Alle Angaben ohne Gewähr! Copyright © by Rohstoff-Welt.de -1999-2025. Es gelten unsere <u>AGB</u> und <u>Datenschutzrichtlinen</u>.

27.04.2025 Seite 9/9